Science current issue 
  • Immigrants help make America great 
  • Monumental patience 
  • News at a glance 
  • U.K. megatrial outshines other drug studies 
  • Can interferons stop COVID-19 before it takes hold? 
  • UAE probe aims for Mars--and payoffs on Earth 
  • Polynesians, Native Americans met and mingled long ago 
  • New security law rattles Hong Kong universities 
  • No room for error 
  • How to build a more open justice system 
  • Climate change tweaks Arctic marine ecosystems 
  • Fuel cells that operate at 300{degrees} to 500{degrees}C 
  • Reining in dissolved transition-metal ions 
  • Bats navigate with cognitive maps 
  • Exploring the source of human brain fluids 
  • Exercising your mind 
  • Rigorous wildlife disease surveillance 
  • Paleoart comes into its own 
  • Changing course 
  • Preparing for proactive dam removal decisions 
  • Unnecessary hesitancy on human vaccine tests 
  • Unnecessary hesitancy on human vaccine tests--Response 
  • Poised for tissue repair 
  • Microbial management 
  • Modulating microbiome metabolites in vivo 
  • Teeth and jaws 
  • Engineering a toxin 
  • Conserved redox regulation of kinases 
  • Beneficial bioartificial livers 
  • An inherited disorder makes WAVEs 
  • Strongly coupled at distance 
  • Food for thought 
  • Plasma transfers exercise benefit in mice 
  • Roles of organ-specific lymphatic vessels 
  • Monitoring wildlife disease 
  • Cell-cell contacts specify cell fate 
  • Brain barrier and support in a dish 
  • Keeping the lid on infection spread 
  • A metallic route for protons 
  • Knowing their way around 
  • COVID-19 pandemic in France 
  • A very high Chern number 
  • The TOX profiles of T cells 
  • Self-powered electronic skin 
  • Getting to the root of a problem 
  • Early warning signs 
  • Monkeying with the piano 
  • DNA repair in the placenta 
  • Getting active to increase equity 
  • Holding protein pairs in place 
  • Greater variability, greater punishment 
  • Structure and selectivity engineering of the M1 muscarinic receptor toxin complex 

    Muscarinic toxins (MTs) are natural toxins produced by mamba snakes that primarily bind to muscarinic acetylcholine receptors (MAChRs) and modulate their function. Despite their similar primary and tertiary structures, MTs show distinct binding selectivity toward different MAChRs. The molecular details of how MTs distinguish MAChRs are not well understood. Here, we present the crystal structure of M1AChR in complex with MT7, a subtype-selective anti-M1AChR snake venom toxin. The structure reveals the molecular basis of the extreme subtype specificity of MT7 for M1AChR and the mechanism by which it regulates receptor function. Through in vitro engineering of MT7 finger regions that was guided by the structure, we have converted the selectivity from M1AChR toward M2AChR, suggesting that the three-finger fold is a promising scaffold for developing G protein–coupled receptor modulators.

  • Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain 

    Reversing brain aging may be possible through systemic interventions such as exercise. We found that administration of circulating blood factors in plasma from exercised aged mice transferred the effects of exercise on adult neurogenesis and cognition to sedentary aged mice. Plasma concentrations of glycosylphosphatidylinositol (GPI)–specific phospholipase D1 (Gpld1), a GPI-degrading enzyme derived from liver, were found to increase after exercise and to correlate with improved cognitive function in aged mice, and concentrations of Gpld1 in blood were increased in active, healthy elderly humans. Increasing systemic concentrations of Gpld1 in aged mice ameliorated age-related regenerative and cognitive impairments by altering signaling cascades downstream of GPI-anchored substrate cleavage. We thus identify a liver-to-brain axis by which blood factors can transfer the benefits of exercise in old age.

  • Light-mediated strong coupling between a mechanical oscillator and atomic spins 1 meter apart 

    Engineering strong interactions between quantum systems is essential for many phenomena of quantum physics and technology. Typically, strong coupling relies on short-range forces or on placing the systems in high-quality electromagnetic resonators, which restricts the range of the coupling to small distances. We used a free-space laser beam to strongly couple a collective atomic spin and a micromechanical membrane over a distance of 1 meter in a room-temperature environment. The coupling is highly tunable and allows the observation of normal-mode splitting, coherent energy exchange oscillations, two-mode thermal noise squeezing, and dissipative coupling. Our approach to engineering coherent long-distance interactions with light makes it possible to couple very different systems in a modular way, opening up a range of opportunities for quantum control and coherent feedback networks.

  • Observation and control of maximal Chern numbers in a chiral topological semimetal 

    Topological semimetals feature protected nodal band degeneracies characterized by a topological invariant known as the Chern number (C). Nodal band crossings with linear dispersion are expected to have at most , which sets an upper limit to the magnitude of many topological phenomena in these materials. Here, we show that the chiral crystal palladium gallium (PdGa) displays multifold band crossings, which are connected by exactly four surface Fermi arcs, thus proving that they carry the maximal Chern number magnitude of 4. By comparing two enantiomers, we observe a reversal of their Fermi-arc velocities, which demonstrates that the handedness of chiral crystals can be used to control the sign of their Chern numbers.

  • Proton transport enabled by a field-induced metallic state in a semiconductor heterostructure 

    Tuning a semiconductor to function as a fast proton conductor is an emerging strategy in the rapidly developing field of proton ceramic fuel cells (PCFCs). The key challenge for PCFC researchers is to formulate the proton-conducting electrolyte with conductivity above 0.1 siemens per centimeter at low temperatures (300 to 600°C). Here we present a methodology to design an enhanced proton conductor by means of a NaxCoO2/CeO2 semiconductor heterostructure, in which a field-induced metallic state at the interface accelerates proton transport. We developed a PCFC with an ionic conductivity of 0.30 siemens per centimeter and a power output of 1 watt per square centimeter at 520°C. Through our semiconductor heterostructure approach, our results provide insight into the proton transport mechanism, which may also improve ionic transport in other energy applications.

  • Cognitive map-based navigation in wild bats revealed by a new high-throughput tracking system 

    Seven decades of research on the "cognitive map," the allocentric representation of space, have yielded key neurobiological insights, yet field evidence from free-ranging wild animals is still lacking. Using a system capable of tracking dozens of animals simultaneously at high accuracy and resolution, we assembled a large dataset of 172 foraging Egyptian fruit bats comprising >18 million localizations collected over 3449 bat-nights across 4 years. Detailed track analysis, combined with translocation experiments and exhaustive mapping of fruit trees, revealed that wild bats seldom exhibit random search but instead repeatedly forage in goal-directed, long, and straight flights that include frequent shortcuts. Alternative, non–map-based strategies were ruled out by simulations, time-lag embedding, and other trajectory analyses. Our results are consistent with expectations from cognitive map–like navigation and support previous neurobiological evidence from captive bats.

  • The ontogeny of a mammalian cognitive map in the real world 

    How animals navigate over large-scale environments remains a riddle. Specifically, it is debated whether animals have cognitive maps. The hallmark of map-based navigation is the ability to perform shortcuts, i.e., to move in direct but novel routes. When tracking an animal in the wild, it is extremely difficult to determine whether a movement is truly novel because the animal’s past movement is unknown. We overcame this difficulty by continuously tracking wild fruit bat pups from their very first flight outdoors and over the first months of their lives. Bats performed truly original shortcuts, supporting the hypothesis that they can perform large-scale map-based navigation. We documented how young pups developed their visual-based map, exemplifying the importance of exploration and demonstrating interindividual differences.

  • Changes in phytoplankton concentration now drive increased Arctic Ocean primary production 

    Historically, sea ice loss in the Arctic Ocean has promoted increased phytoplankton primary production because of the greater open water area and a longer growing season. However, debate remains about whether primary production will continue to rise should sea ice decline further. Using an ocean color algorithm parameterized for the Arctic Ocean, we show that primary production increased by 57% between 1998 and 2018. Surprisingly, whereas increases were due to widespread sea ice loss during the first decade, the subsequent rise in primary production was driven primarily by increased phytoplankton biomass, which was likely sustained by an influx of new nutrients. This suggests a future Arctic Ocean that can support higher trophic-level production and additional carbon export.

  • HEM1 deficiency disrupts mTORC2 and F-actin control in inherited immunodysregulatory disease 

    Immunodeficiency often coincides with hyperactive immune disorders such as autoimmunity, lymphoproliferation, or atopy, but this coincidence is rarely understood on a molecular level. We describe five patients from four families with immunodeficiency coupled with atopy, lymphoproliferation, and cytokine overproduction harboring mutations in NCKAP1L, which encodes the hematopoietic-specific HEM1 protein. These mutations cause the loss of the HEM1 protein and the WAVE regulatory complex (WRC) or disrupt binding to the WRC regulator, Arf1, thereby impairing actin polymerization, synapse formation, and immune cell migration. Diminished cortical actin networks caused by WRC loss led to uncontrolled cytokine release and immune hyperresponsiveness. HEM1 loss also blocked mechanistic target of rapamycin complex 2 (mTORC2)–dependent AKT phosphorylation, T cell proliferation, and selected effector functions, leading to immunodeficiency. Thus, the evolutionarily conserved HEM1 protein simultaneously regulates filamentous actin (F-actin) and mTORC2 signaling to achieve equipoise in immune responses.

  • Estimating the burden of SARS-CoV-2 in France 

    France has been heavily affected by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic and went into lockdown on 17 March 2020. Using models applied to hospital and death data, we estimate the impact of the lockdown and current population immunity. We find that 2.9% of infected individuals are hospitalized and 0.5% of those infected die (95% credible interval: 0.3 to 0.9%), ranging from 0.001% in those under 20 years of age to 8.3% in those 80 years of age or older. Across all ages, men are more likely to be hospitalized, enter intensive care, and die than women. The lockdown reduced the reproductive number from 2.90 to 0.67 (77% reduction). By 11 May 2020, when interventions are scheduled to be eased, we project that 3.5 million people (range: 2.1 million to 6.0 million), or 5.3% of the population (range: 3.3 to 9.3%), will have been infected. Population immunity appears to be insufficient to avoid a second wave if all control measures are released at the end of the lockdown.

  • Marginal dentition and multiple dermal jawbones as the ancestral condition of jawed vertebrates 

    The dentitions of extant fishes and land vertebrates vary in both pattern and type of tooth replacement. It has been argued that the common ancestral condition likely resembles the nonmarginal, radially arranged tooth files of arthrodires, an early group of armoured fishes. We used synchrotron microtomography to describe the fossil dentitions of so-called acanthothoracids, the most phylogenetically basal jawed vertebrates with teeth, belonging to the genera Radotina, Kosoraspis, and Tlamaspis (from the Early Devonian of the Czech Republic). Their dentitions differ fundamentally from those of arthrodires; they are marginal, carried by a cheekbone or a series of short dermal bones along the jaw edges, and teeth are added lingually as is the case in many chondrichthyans (cartilaginous fishes) and osteichthyans (bony fishes and tetrapods). We propose these characteristics as ancestral for all jawed vertebrates.

  • The day I left the lab 
  • Biological functions of lymphatic vessels 

    The general functions of lymphatic vessels in fluid transport and immunosurveillance are well recognized. However, accumulating evidence indicates that lymphatic vessels play active and versatile roles in a tissue- and organ-specific manner during homeostasis and in multiple disease processes. This Review discusses recent advances to understand previously unidentified functions of adult mammalian lymphatic vessels, including immunosurveillance and immunomodulation upon pathogen invasion, transport of dietary fat, drainage of cerebrospinal fluid and aqueous humor, possible contributions toward neurodegenerative and neuroinflammatory diseases, and response to anticancer therapies.

  • Human CNS barrier-forming organoids with cerebrospinal fluid production 

    Cerebrospinal fluid (CSF) is a vital liquid, providing nutrients and signaling molecules and clearing out toxic by-products from the brain. The CSF is produced by the choroid plexus (ChP), a protective epithelial barrier that also prevents free entry of toxic molecules or drugs from the blood. Here, we establish human ChP organoids with a selective barrier and CSF-like fluid secretion in self-contained compartments. We show that this in vitro barrier exhibits the same selectivity to small molecules as the ChP in vivo and that ChP-CSF organoids can predict central nervous system (CNS) permeability of new compounds. The transcriptomic and proteomic signatures of ChP-CSF organoids reveal a high degree of similarity to the ChP in vivo. Finally, the intersection of single-cell transcriptomics and proteomic analysis uncovers key human CSF components produced by previously unidentified specialized epithelial subtypes.

  • Contact area-dependent cell communication and the morphological invariance of ascidian embryogenesis 

    Marine invertebrate ascidians display embryonic reproducibility: Their early embryonic cell lineages are considered invariant and are conserved between distantly related species, despite rapid genomic divergence. Here, we address the drivers of this reproducibility. We used light-sheet imaging and automated cell segmentation and tracking procedures to systematically quantify the behavior of individual cells every 2 minutes during Phallusia mammillata embryogenesis. Interindividual reproducibility was observed down to the area of individual cell contacts. We found tight links between the reproducibility of embryonic geometries and asymmetric cell divisions, controlled by differential sister cell inductions. We combined modeling and experimental manipulations to show that the area of contact between signaling and responding cells is a key determinant of cell communication. Our work establishes the geometric control of embryonic inductions as an alternative to classical morphogen gradients and suggests that the range of cell signaling sets the scale at which embryonic reproducibility is observed.

  • Inferring change points in the spread of COVID-19 reveals the effectiveness of interventions 

    As coronavirus disease 2019 (COVID-19) is rapidly spreading across the globe, short-term modeling forecasts provide time-critical information for decisions on containment and mitigation strategies. A major challenge for short-term forecasts is the assessment of key epidemiological parameters and how they change when first interventions show an effect. By combining an established epidemiological model with Bayesian inference, we analyzed the time dependence of the effective growth rate of new infections. Focusing on COVID-19 spread in Germany, we detected change points in the effective growth rate that correlate well with the times of publicly announced interventions. Thereby, we could quantify the effect of interventions and incorporate the corresponding change points into forecasts of future scenarios and case numbers. Our code is freely available and can be readily adapted to any country or region.