Science current issue 
  • The safety of nuclear's future 
  • News at a glance 
  • 'Landmark African vaccine trial faces impasse 
  • NASA missions to test idea of a watery past for Venus 
  • Mixing vaccines may boost immune responses 
  • DNA test to predict odds of severe COVID-19 draws scrutiny 
  • New science adviser looks ahead to shaping Biden agenda 
  • Alzheimer's drug approved despite murky results 
  • A sense of self 
  • Human-food feedback in tropical forests 
  • Supplements to treat prediabetes 
  • Is lithium the key for nitrogen electroreduction? 
  • Machine-generated theories of human decision-making 
  • Expanding gliogenesis 
  • Giving antibiotics an assist 
  • Using DNA to reunify separated migrant families 
  • Approaching invisible illness 
  • Embracing the relational nature of existence 
  • Include macrofungi in biodiversity targets 
  • Ocean acidification science stands strong 
  • The risks of solar geoengineering research 
  • Revolution in an RNA-packaging capsid 
  • Shuttling protons in ammonia synthesis 
  • Imaging polariton dynamics 
  • Cell size set by cell cycle regulation 
  • Bonding to a quantum corral 
  • Depleting adenine to prime for apoptosis 
  • Spiral features in the early Universe 
  • Atmospheric ozone and pandemic lockdowns 
  • Astronomy accelerates tumor imaging 
  • A family of thin materials 
  • Visualizing Xist RNA dynamics 
  • Estimating resilience in complex systems 
  • Turning down tolerance 
  • Prethermal time crystal 
  • Gliogenesis in the adult mouse brain 
  • How Hedgehog gets its lipid tail 
  • Anti-aging supplement effects in humans 
  • Discovering better theories 
  • A bouncer for bone marrow 
  • One shot for Lassa virus 
  • The hard way to produce red 
  • Waste management on the go 
  • Entrapment prevents healing 
  • Neuronal activity asleep 
  • Extending interactions 
  • A stable diazoalkene 
  • Targeting heme insertion 
  • Inhibitors of bacterial H2S biogenesis targeting antibiotic resistance and tolerance 

    Emergent resistance to all clinical antibiotics calls for the next generation of therapeutics. Here we report an effective antimicrobial strategy targeting the bacterial hydrogen sulfide (H2S)–mediated defense system. We identified cystathionine -lyase (CSE) as the primary generator of H2S in two major human pathogens, Staphylococcus aureus and Pseudomonas aeruginosa, and discovered small molecules that inhibit bacterial CSE. These inhibitors potentiate bactericidal antibiotics against both pathogens in vitro and in mouse models of infection. CSE inhibitors also suppress bacterial tolerance, disrupting biofilm formation and substantially reducing the number of persister bacteria that survive antibiotic treatment. Our results establish bacterial H2S as a multifunctional defense factor and CSE as a drug target for versatile antibiotic enhancers.

  • Cell size controlled in plants using DNA content as an internal scale 

    How eukaryotic cells assess and maintain sizes specific for their species and cell type remains unclear. We show that in the Arabidopsis shoot stem cell niche, cell size variability caused by asymmetric divisions is corrected by adjusting the growth period before DNA synthesis. KIP-related protein 4 (KRP4) inhibits progression to DNA synthesis and associates with mitotic chromosomes. The F BOX-LIKE 17 (FBL17) protein removes excess KRP4. Consequently, daughter cells are born with comparable amounts of KRP4. Inhibitor dilution models predicted that KRP4 inherited through chromatin would robustly regulate size, whereas inheritance of excess free KRP4 would disrupt size homeostasis, as confirmed by mutant analyses. We propose that a cell cycle regulator, stabilized by association with mitotic chromosomes, reads DNA content as a cell size–independent scale.

  • Spatiotemporal imaging of 2D polariton wave packet dynamics using free electrons 

    Coherent optical excitations in two-dimensional (2D) materials, 2D polaritons, can generate a plethora of optical phenomena that arise from the extraordinary dispersion relations that do not exist in regular materials. Probing of the dynamical phenomena of 2D polaritons requires simultaneous spatial and temporal imaging capabilities and could reveal unknown coherent optical phenomena in 2D materials. Here, we present a spatiotemporal measurement of 2D wave packet dynamics, from its formation to its decay, using an ultrafast transmission electron microscope driven by femtosecond midinfrared pulses. The ability to coherently excite phonon-polariton wave packets and probe their evolution in a nondestructive manner reveals intriguing dispersion-dependent dynamics that includes splitting of multibranch wave packets and, unexpectedly, wave packet deceleration and acceleration. Having access to the full spatiotemporal dynamics of 2D wave packets can be used to illuminate puzzles in topological polaritons and discover exotic nonlinear optical phenomena in 2D materials.

  • Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle 

    Ammonia (NH3) is a globally important commodity for fertilizer production, but its synthesis by the Haber-Bosch process causes substantial emissions of carbon dioxide. Alternative, zero-carbon emission NH3 synthesis methods being explored include the promising electrochemical lithium-mediated nitrogen reduction reaction, which has nonetheless required sacrificial sources of protons. In this study, a phosphonium salt is introduced as a proton shuttle to help resolve this limitation. The salt also provides additional ionic conductivity, enabling high NH3 production rates of 53 ± 1 nanomoles per second per square centimeter at 69 ± 1% faradaic efficiency in 20-hour experiments under 0.5-bar hydrogen and 19.5-bar nitrogen. Continuous operation for more than 3 days is demonstrated.

  • Observation of a prethermal discrete time crystal 

    Extending the framework of statistical physics to the nonequilibrium setting has led to the discovery of previously unidentified phases of matter, often catalyzed by periodic driving. However, preventing the runaway heating that is associated with driving a strongly interacting quantum system remains a challenge in the investigation of these newly discovered phases. In this work, we utilize a trapped-ion quantum simulator to observe the signatures of a nonequilibrium driven phase without disorder—the prethermal discrete time crystal. Here, the heating problem is circumvented not by disorder-induced many-body localization, but rather by high-frequency driving, which leads to an expansive time window where nonequilibrium phases can emerge. Floquet prethermalization is thus presented as a general strategy for creating, stabilizing, and studying intrinsically out-of-equilibrium phases of matter.

  • Very weak bonds to artificial atoms formed by quantum corrals 

    We explored the bonding properties of the quantum corral (a circle of 48 iron atoms placed on a copper surface) reported by Crommie et al. in 1993, along with variants, as an artificial atom using an atomic force microscope (AFM). The original corral geometry confines 102 electrons to 28 discrete energy states, and we found that these states can form a bond to the front atom of the AFM with an energy of about 5 millielectron volts. The measured forces are about 1/1000 of typical forces in atomically resolved AFM. The confined electrons showed covalent attraction to metal tips and Pauli repulsion to CO-terminated tips. The repulsion at close distance was evident from the response of corral states created by deliberately placing single iron atoms inside the corral. The forces scaled appropriately with a 24-atom corral.

  • Spiral morphology in an intensely star-forming disk galaxy more than 12 billion years ago 

    Spiral galaxies have distinct internal structures, including a stellar bulge, a disk, and spiral arms. It is unknown when in cosmic history these structures formed. In this study, we analyzed observations of BRI 1335–0417, an intensely star-forming galaxy in the distant Universe, at a redshift of 4.41. The [C ii] gas kinematics shows a steep velocity rise near the galaxy center and has a two-armed spiral morphology, which extends from about 2 to 5 kiloparsecs in radius. We interpret these features as due to a central compact structure such as a bulge, a rotating gas disk, and either spiral arms or tidal tails. These features had formed within 1.4 billion years after the Big Bang, long before the peak of cosmic star formation.

  • Release of stem cells from quiescence reveals gliogenic domains in the adult mouse brain 

    Quiescent neural stem cells (NSCs) in the adult mouse ventricular-subventricular zone (V-SVZ) undergo activation to generate neurons and some glia. Here we show that platelet-derived growth factor receptor beta (PDGFRβ) is expressed by adult V-SVZ NSCs that generate olfactory bulb interneurons and glia. Selective deletion of PDGFRβ in adult V-SVZ NSCs leads to their release from quiescence, uncovering gliogenic domains for different glial cell types. These domains are also recruited upon injury. We identify an intraventricular oligodendrocyte progenitor derived from NSCs inside the brain ventricles that contacts supraependymal axons. Together, our findings reveal that the adult V-SVZ contains spatial domains for gliogenesis, in addition to those for neurogenesis. These gliogenic NSC domains tend to be quiescent under homeostasis and may contribute to brain plasticity.

  • Using large-scale experiments and machine learning to discover theories of human decision-making 

    Predicting and understanding how people make decisions has been a long-standing goal in many fields, with quantitative models of human decision-making informing research in both the social sciences and engineering. We show how progress toward this goal can be accelerated by using large datasets to power machine-learning algorithms that are constrained to produce interpretable psychological theories. Conducting the largest experiment on risky choice to date and analyzing the results using gradient-based optimization of differentiable decision theories implemented through artificial neural networks, we were able to recapitulate historical discoveries, establish that there is room to improve on existing theories, and discover a new, more accurate model of human decision-making in a form that preserves the insights from centuries of research.

  • Substrate and product complexes reveal mechanisms of Hedgehog acylation by HHAT 

    Hedgehog proteins govern crucial developmental steps in animals and drive certain human cancers. Before they can function as signaling molecules, Hedgehog precursor proteins must undergo amino-terminal palmitoylation by Hedgehog acyltransferase (HHAT). We present cryo–electron microscopy structures of human HHAT in complex with its palmitoyl–coenzyme A substrate and of a product complex with a palmitoylated Hedgehog peptide at resolutions of 2.7 and 3.2 angstroms, respectively. The structures reveal how HHAT overcomes the challenges of bringing together substrates that have different physiochemical properties from opposite sides of the endoplasmic reticulum membrane within a membrane-embedded active site for catalysis. These principles are relevant to related enzymes that catalyze the acylation of Wnt and of the appetite-stimulating hormone ghrelin. The structural and mechanistic insights may advance the development of inhibitors for cancer.

  • Evolution of a virus-like architecture and packaging mechanism in a repurposed bacterial protein 

    Viruses are ubiquitous pathogens of global impact. Prompted by the hypothesis that their earliest progenitors recruited host proteins for virion formation, we have used stringent laboratory evolution to convert a bacterial enzyme that lacks affinity for nucleic acids into an artificial nucleocapsid that efficiently packages and protects multiple copies of its own encoding messenger RNA. Revealing remarkable convergence on the molecular hallmarks of natural viruses, the accompanying changes reorganized the protein building blocks into an interlaced 240-subunit icosahedral capsid that is impermeable to nucleases, and emergence of a robust RNA stem-loop packaging cassette ensured high encapsidation yields and specificity. In addition to evincing a plausible evolutionary pathway for primordial viruses, these findings highlight practical strategies for developing nonviral carriers for diverse vaccine and delivery applications.

  • Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women 

    In rodents, obesity and aging impair nicotinamide adenine dinucleotide (NAD+) biosynthesis, which contributes to metabolic dysfunction. Nicotinamide mononucleotide (NMN) availability is a rate-limiting factor in mammalian NAD+ biosynthesis. We conducted a 10-week, randomized, placebo-controlled, double-blind trial to evaluate the effect of NMN supplementation on metabolic function in postmenopausal women with prediabetes who were overweight or obese. Insulin-stimulated glucose disposal, assessed by using the hyperinsulinemic-euglycemic clamp, and skeletal muscle insulin signaling [phosphorylation of protein kinase AKT and mechanistic target of rapamycin (mTOR)] increased after NMN supplementation but did not change after placebo treatment. NMN supplementation up-regulated the expression of platelet-derived growth factor receptor β and other genes related to muscle remodeling. These results demonstrate that NMN increases muscle insulin sensitivity, insulin signaling, and remodeling in women with prediabetes who are overweight or obese ( NCT 03151239).

  • Gordon Research Conferences 
  • Reclaiming my name 
  • The world of two-dimensional carbides and nitrides (MXenes) 

    A decade after the first report, the family of two-dimensional (2D) carbides and nitrides (MXenes) includes structures with three, five, seven, or nine layers of atoms in an ordered or solid solution form. Dozens of MXene compositions have been produced, resulting in MXenes with mixed surface terminations. MXenes have shown useful and tunable electronic, optical, mechanical, and electrochemical properties, leading to applications ranging from optoelectronics, electromagnetic interference shielding, and wireless antennas to energy storage, catalysis, sensing, and medicine. Here we present a forward-looking review of the field of MXenes. We discuss the challenges to be addressed and outline research directions that will deepen the fundamental understanding of the properties of MXenes and enable their hybridization with other 2D materials in various emerging technologies.

  • Analysis of multispectral imaging with the AstroPath platform informs efficacy of PD-1 blockade 

    Next-generation tissue-based biomarkers for immunotherapy will likely include the simultaneous analysis of multiple cell types and their spatial interactions, as well as distinct expression patterns of immunoregulatory molecules. Here, we introduce a comprehensive platform for multispectral imaging and mapping of multiple parameters in tumor tissue sections with high-fidelity single-cell resolution. Image analysis and data handling components were drawn from the field of astronomy. Using this "AstroPath" whole-slide platform and only six markers, we identified key features in pretreatment melanoma specimens that predicted response to anti–programmed cell death-1 (PD-1)–based therapy, including CD163+PD-L1 myeloid cells and CD8+FoxP3+PD-1low/mid T cells. These features were combined to stratify long-term survival after anti–PD-1 blockade. This signature was validated in an independent cohort of patients with melanoma from a different institution.

  • Exit time as a measure of ecological resilience 

    Ecological resilience is the magnitude of the largest perturbation from which a system can still recover to its original state. However, a transition into another state may often be invoked by a series of minor synergistic perturbations rather than a single big one. We show how resilience can be estimated in terms of average life expectancy, accounting for this natural regime of variability. We use time series to fit a model that captures the stochastic as well as the deterministic components. The model is then used to estimate the mean exit time from the basin of attraction. This approach offers a fresh angle to anticipating the chance of a critical transition at a time when high-resolution time series are becoming increasingly available.

  • Time-resolved structured illumination microscopy reveals key principles of Xist RNA spreading 

    X-inactive specific transcript (Xist) RNA directs the process of X chromosome inactivation in mammals by spreading in cis along the chromosome from which it is transcribed and recruiting chromatin modifiers to silence gene transcription. To elucidate mechanisms of Xist RNA cis-confinement, we established a sequential dual-color labeling, super-resolution imaging approach to trace individual Xist RNA molecules over time, which enabled us to define fundamental parameters of spreading. We demonstrate a feedback mechanism linking Xist RNA synthesis and degradation and an unexpected physical coupling between preceding and newly synthesized Xist RNA molecules. Additionally, we find that the protein SPEN, a key factor for Xist-mediated gene silencing, has a distinct function in Xist RNA localization, stability, and coupling behaviors. Our results provide insights toward understanding the distinct dynamic properties of Xist RNA.